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Abstract. We will deal with the following problem:
Let M be an n×n matrix with real entries. Under which conditions the family of inequalities:

x∈�n�x�0�M ·x�0

has non–trivial solutions?
We will prove that a sufficient condition is given by

mi�j+mj�i�0 �1� i�j�n��

from this result we will derive an elementary proof of the existence theorem for Variational Inequal-
ities in the framework of Monotone Operators.

1. The Problem

Let us firstly specify what we mean by variational inequality for a monotone
operator. We are given 	V �K�j�a
 with:

• V is a real reflexive Banach space;
• K is a closed convex non–empty subset of V ;
• j �v→j�v� is a convex l.s.c. map from K to�;
• a��u�v�→a�u�v� is a map from V×V to�;
• the map a is monotone:

a�u�u−v��a�v�u−v� for any u�v∈V ;
• for any u∈V the map v→a�u�v� is linear continuous;
• for any v∈V the map u→a�u�v� is hemi–continuous, say:

∀w∈V the map �0�1�	 t→a�tu+�1−t�w�v� is l.s.c.

Under these assumptions, we ask for:

��I� Find u∈K such that a�u�u−v�+j�u��j�v� ∀v∈K�

A large family of problems arising from applications can be settled into this
general framework; thus many papers were devoted to the subject, and many res-
ults are known; see, e.g., [1] and the references given there. In particular, under a
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suitable coerciveness assumption (see (4) later on) one has:{
the family of solutions of ��I�
is a convex closed non–empty subset of V

(1)

the uniqueness holding true e.g. if we assume a “strong” monotonicity of the map
a, by adding the hypothesis:

	u�v∈K�a�u�u−v�=a�v�u−v�
�⇒ 	u=v
�

In order to specify the coerciveness assumption, let us recall that, in the original
setting of Stampacchia [3], V is a Hilbert-space and both a�u�·��j�u� are linear
continuous; in particular ��I� becomes:

find u∈K such that a�u�u−v��j�u−v�∀v∈K� (2)

The Stampacchia’s theorem says that under the crucial assumption:

∃�>0 such that a�u−v�u−v����u−v�2V ∀u�v∈K (3)

problem (2) has a unique solution, the map j→u being lipschitz–continuous from
V ′ to V .
We are of course dealing with a very special case of the general framework;

remark that (3) implies not only the (strong) monotonicity but also a coerciveness
property, that we will write in the form:{

if K is unbounded, there exists u0∈K such that
a�v�v−u0�+j�v�

�v� −→0 when �v�→��v∈K (4)

A crucial role in our problem will be played by the so called “Minty’s Lemma”
(see [2]; later on we will prove it in a very general setting): u solves ��I� if and
only if u solves a somewhat “simpler” family of inequalities, say:

��� Find u∈K such that a�v�u−v�+j�u��j�v� ∀v∈K�

Concerning problem ���, it is quite immediate to prove that the set of solutions is
a convex closed (possibly empty) subset of V . This result (that, looking directly at
��I�, is not obvious at all) joined to the coerciveness assumption, allows to greatly
simplify the treatment of the problem because, as we will show, it will be sufficient
to prove the existence result in the framework of:

K is the convex hull of some v1�v2����vn∈V � (5)

On the other hand, also in the framework of (5), the existence theorem could seem a
“deep” result, the usual proof being based on a (Brower–like) fixed–point theorem.
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Our goal will be to give a quite elementary proof of (1): in the framework of (5) as
a first step; then, as a second step, under the general assumption (4).

2. A More Abstract Framework

We are given 	� ���F
 with:{
� is a non-empty convex subset of a linear vector space � �

F �	u�v
→F�u�v� is a map from�×� to��

we ask for conditions on 	� ���F
 such that the family of inequalities:

(�) u∈�� F �u�v��0 ∀v∈�
has at least one solution. The change of notations with respect to the previous
section (we use here � �� instead of V �K) is motivated by the fact that we want to
postpone as much as possible the use of “topological” assumptions. Remark that
problem ��I� obviously corresponds to the choice:

F�u�v� �=a�u�u−v�+j�u�−j�v� (6)

while, with the same choice of F , problem ��� corresponds to:

(�∗) u∈�� F �v�u��0 ∀v∈��

REMARK 1. Let us point out that all the assumptions on F in the following (see
(7), (8), (9) and F�v�v��0 in Lemma 1) are clearly satisfied with respect to the
choice (6).

The (possibly empty) family of solutions of � obviously coincides with the
set � defined by:

� �=⋂
v∈�

��v� where, for v∈�� ��v� �=
{
u∈�

∣∣∣F�u�v��0}�
thus we must search for assumptions sufficient to imply that such an intersection is
non-empty.
Let us take a trivial example as a guideline: fix any f ��→� and set

F�u�v� �=f �u�−f �v�; thus the sets ��v� are the “level subsets” of f ; and u
solves (�) if and only if u minimizes f on �. The example clearly shows the
need for some topological assumptions; on the other hand it suggests the following
general strategy: if we can prove that

any ��v� is closed; at least one is compact

the set � will be non–empty if and only if the family 	��v��v∈�
 satisfies the
“finite intersection property”.
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In fact (also in order to weaken the “continuity” assumptions on F ) we will first
of all search for assumptions implying that problems ��� and ���� are equivalent;
then we will apply the general strategy to problem ����. In other words, setting:

�� �=
⋂
v∈�

���v� where, for v∈�� ���v� �=
{
u∈�

∣∣∣F�v�u��0}
we will ask for conditions implying (�≡�� and) � �=∅.
In our trivial example problems ��� and ���� coincide because of the obvious

property ��v�≡���v� for any v∈�; more generally, this equivalence holds true
if F is “anti-symmetric”: F�u�v�+F�v�u�≡0. However in the following we will
only impose the weaker assumption of “monotonicity”, say:

F�u�v�+F�v�u��0 ∀u�v∈� (7)

so that only one inclusion trivially holds true:

��v�⊆���v�∀v∈�; in particular �⊆�� �

The reversed inclusion will follow from an abstract version of the Minty’s Lemma,
that requires some assumptions of topological nature. The first one, concerning the
dependence on v of F�u�v�, reads:

for any u∈� the function v→F�u�v� is concave s.c.s. (8)

Of course, concerning the semi–continuity, the topology on the linear space � will
play an inessential role (because of the concavity); the same holds true for the
second assumption of “hemi–continuity”:

∀u�v�w∈� the map �0�1�	 t→F
(
tu+�1−t�v�w

)
is l.s.c. (9)

LEMMA 1. Let F be given with (8), (9). If for any v∈� one has F�v�v��0,
then:

��⊆��v� ∀v∈�; in particular ��⊆�� (10)

Proof. Fix any u∈��, any v∈� and any w in the open segment �u�v�. For
z varying in the segment �u�v� the function z→F�w�z� is positive in z=u
(because u∈��) and negative in the interior point z=w; being concave, it
must be negative at the other end z=w of the segment, say F�w�v��0. The
inequality F�w�v��0 being satisfied for any w in the open segment �u�v�, from
the hemi–continuity assumption we get that it F�w�v� remains negative at w=u;
say F�u�v��0, as needed. �

3. The Finite Intersection Property

From now on we will always assume that F is a monotone function that satisfies
the assumptions of Lemma 1; thus we will always have �≡��. Of course, because
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of the monotonicity, the assumption F�v�v��0 becomes F�v�v�=0; in partic-
ular the “step 0” of the finite intersection property holds true: the sets ��v� and
���v� are both non–empty because each of them contains at least v. Let us prove
that, more generally:

for any choice of v1�v2�����vn∈�, it is
n⋂

j=1
���vj� �=∅� (11)

more precisely, we will find in this intersection an element u of the convex hull of

v1�v2�����vn, say u= n∑
j=1

�jvj with �j�0�
n∑

j=1
�j=1. In order to do that we

should solve the system of inequalities

F�vk�
n∑

j=1
�jvj��0 �k=1�2�����n�

but, because of the concavity of F�·�v�, it will be sufficient to solve:
n∑

j=1
�jF�vk�vj��0 �k=1�2�����n�

say, denoting by M the n×n matrix with entries mk�j �=F�vk�vj�, we must find
a non–trivial solution for:

x∈�n�x�0�M ·x�0 (12)

(then we will set �j �=xj/"xk).
We are thus faced with the problem settled out in the Abstract; concerning our

matrix M the only property we know follows from the monotonicity of F : it is
M+M∗�0, where M∗ denotes the transposed matrix of M. Let us show that this
property suffices:

THEOREM 1. Let M be an n×n matrix with real entries such that M+M∗�0.
Then the system of inequalities (12) has non–trivial solutions.

Proof. Let us denote by � the positive cone in �n and by 	 the cone:

	 �=
{
M ·y−z

∣∣∣ y�z∈�}
We then distinguish two cases:

• 	 is dense in �n. Then we can find two sequences yk�zk in � such that
M ·yk−zk tends to 1. Thus, for sufficiently great k, we have M ·yk�1/2;
so that yk cannot vanish and M ·yk�0. Being yk∈� , the choice x �=yk
gives a non-trivial solution of (12).
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• 	 is non-dense in �n. Then we can find a non-zero vector x forming an obtuse
angle with any element of 	: �x�M ·y−z��0 for any y�z∈� . The choice
y=0 gives x�0, while the choice z=0 gives M∗ ·x�0. We claim
that, because of M+M∗�0, this x is a non-trivial solution of (12). In fact
we already know x �=0, M∗ ·x�0 and x∈�; from this last relation and
M+M∗�0 follows �M+M∗�·x�0; thusM ·x�−M∗ ·x�0.

Thus, in any case, non-trivial solutions of (12) do exist. �
Let us end this section with a first existence result, based on the assumption:

� is the convex hull of a finite family 	w0�w1�����wm
� (13)

Remark that, in particular, we are working in a finite–dimensional space; thus �
can be viewed as a compact convex subset of �m+1.

THEOREM 2. Under the assumption (13) the family � of solutions of problem
(�) is a closed convex non–empty set.

REMARK 2. The convexity of the set � is far from being obvious; on the contrary,
the convexity of �� is quite immediate, because of the obvious convexity of each
���v�. Of course we will work with problem ���� instead of with ��� .

Proof. We only need to check the finite intersection property for the family (of
compact sets) 	���v�
; and this has already been proved: see (11). �

4. The coerciveness assumption

Without some compactness assumptions the sets � and �∗ could already be empty
in the trivial example F�u�v�=f �u�−f �v�; e.g., when �=�=��f �x�=
exp�−x�. In Thm 2 the compactness was a consequence of the assumption (13);
here we will assume that��� and F are given with:


� is a reflexive Banach space;

�⊆� is closed convex and non–empty;

there exist a closed ball 
 and a w0∈�
such that F�v�w0�>0 for any v∈�\
�

(14)

remark that the existence of the couple �
�w0� could be given in the abstract
setting by a boundedness of �; while, in the framework of problem ��I� with the
choice (6), it will obviously follow from the coerciveness assumption (4).

THEOREM 3. Under the assumption (14), � is a convex closed non–empty subset
of � .
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REMARK. Here again, as in Rem. 2, in order to prove that � is closed and convex
it is better to think in terms of the formulation ���� : our assumptions trivially
imply that any ���v� (and thus their intersection ��) is a closed convex set. On the
contrary, concerning the existence of at least one solution, a “lack of compactness”
in problem ���� forces to pass through the formulation in terms of problem ��� .

Proof. We firstly remark that, because of (14), one has ��w0�⊆
; thus, because
of ��=�⊆��w0�, setting:

���v� �=

⋂
�∗�v�� �� �= ⋂

v∈�
���v�

we have ��≡��. The sets �
∗�v� (that are convex, bounded and strongly closed) are

weakly compact; thus, once again, we only need to check the finite intersection
property; say we need to prove that, for any finite family w1�w2�����wm∈�,
there exists u0 such that:

u0∈

⋂( m⋂

j=1
���wj�

)
� (15)

Let � be defined by (13), where w0 is the element associated to 
 in (14); from
Thm 2, we know that there exists u0∈� such that F�u0�v��0∀v∈�; let us
show that any such u0 satisfies (15).
On one hand, from u0∈�, we have F�u0�w0��0; thus (14) implies u0∈
;

on the other hand, for j=1�2����m, from F�wj�u0��0 and the monotonicity,
we get F�u0�wj��0, say u0∈�∗�wj�. �
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